Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes.

نویسندگان

  • Janet E Holt
  • Jessica Weaver
  • Keith T Jones
چکیده

Within the mammalian ovary, oocytes remain arrested at G2 for several years. Then a peri-ovulatory hormonal cue triggers meiotic resumption by releasing an inhibitory phosphorylation on the kinase Cdk1. G2 arrest, however, also requires control in the concentrations of the Cdk1-binding partner cyclin B1, a process achieved by anaphase-promoting complex (APC(Cdh1)) activity, which ubiquitylates and so targets cyclin B1 for degradation. Thus, APC(Cdh1) activity prevents precocious meiotic entry by promoting cyclin B1 degradation. However, it remains unresolved how cyclin B1 levels are suppressed sufficiently to maintain arrest but not so low that they make oocytes hormonally insensitive. Here, we examined spatial control of this process by determining the intracellular location of the proteins involved and using nuclear-targeted cyclin B1. We found that raising nuclear cyclin B1 concentrations, an event normally observed in the minutes before nuclear envelope breakdown, was a very effective method of inducing the G2/M transition. Oocytes expressed only the alpha-isoform of Cdh1, which was predominantly nuclear, as were Cdc27 and Psmd11, core components of the APC and the 26S proteasome, respectively. Furthermore, APC(Cdh1) activity appeared higher in the nucleus, as nuclear-targeted cyclin B1 was degraded at twice the rate of wild-type cyclin B1. We propose a simple spatial model of G2 arrest in which nuclear APC(Cdh1)-proteasomal activity guards against any cyclin B1 accumulation mediated by nuclear import.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APCCdh1

Mammalian oocytes are arrested in prophase of the first meiotic division. Progression into the first meiotic division is driven by an increase in the activity of maturation-promoting factor (MPF). In mouse oocytes, we find that early mitotic inhibitor 1 (Emi1), an inhibitor of the anaphase-promoting complex (APC) that is responsible for cyclin B destruction and inactivation of MPF, is present a...

متن کامل

Cdc25A activity is required for the metaphase II arrest in mouse oocytes.

Mammalian oocytes are arrested in metaphase of second meiosis (MII) until fertilization. This arrest is enforced by the cytostatic factor (CSF), which maintains the M-phase promoting factor (MPF) in a highly active state. Although the continuous synthesis and degradation of cyclin B to maintain the CSF-mediated MII arrest is well established, it is unknown whether cyclin-dependent kinase 1 (Cdk...

متن کامل

Skp2 regulates G2/M progression in a p53-dependent manner.

Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27(Kip1) and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated ...

متن کامل

The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes.

Apigenin is a plant flavonoid which has been shown to significantly inhibit UV-induced mouse skin tumorigenesis when applied topically, and may represent an alternative sunscreen agent in humans. We have investigated the molecular mechanism(s) by which apigenin inhibits skin tumorigenesis. Initial studies examined the effects of apigenin on the cell cycle. DNA flow cytometric analysis indicated...

متن کامل

Diallyl disulfide induces reversible G2/M phase arrest on a p53-independent mechanism in human colon cancer HCT-116 cells.

Diallyl disulfide (DADS), a major organosulfur compound of garlic oil, is known to have an anticancer effect on human cancer cells. However, the exact mechanisms of this anticancer activity remain unclear. Here, we investigate the effects of DADS on cell cycle progression in human colon cancer HCT-116 cells by exploring the role played by regulatory molecules such as p53 and cyclin B1. Treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 8  شماره 

صفحات  -

تاریخ انتشار 2010